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Heat and Mass Transfer in an Annular Vertical 
Porous Cylinder Considering Thermal 

Equilibrium with Internal Heat Generation 
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Abstract –The present study is an attempt towards understanding heat and mass transfer as well as fluid flow behavior inside an 

annular vertical cylinder with saturated porous media subjected to the case of natural convection. A study was carried out for 

constant heat generation within the medium with constant temperature boundary conditions. Variation of Nusselt Number and 

Sherwood number was studied with respect to Rayleigh-Darcy number, radius ratio and aspect ratio. This work was carried out 

using the Finite element method. 
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1. INTRODUCTION 

The porous medium is involved in numerous 

applications covering a large number of engineering 

disciplines. Study and research on natural convection in 

porous media enclosures have bloomed in the recent 

past due to their practical importance. Understanding of 

heat and fluid flow behavior in porous media will help 

to design systems in a better way so as to increase the 

efficiency of systems involving these media.  
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 For instance, the study can help to find out the 

occurrence of maximum and minimum heat transfer 

rate with respect to geometrical parameters of 

cylindrical porous media, using which, the system can 

be designed so as to have maximum or minimum heat 

transfer rate. Nuclear reactor cooling is one application 

of convection in porous media with internal heat 

generation. The reactor bed can be modeled as a heat 

generating porous medium of cylindrical cross- section, 

quenched by a convection flow. An annular region is 

the most basic configuration that can be used to 

investigate a wide range of geometrical effects and 

boundary conditions. It can also be used to understand 

and implement results on complex configurations. 

There is abundant literature available for convection in 

porous saturated annular cylinder. Ahmed, Badruddin, 

Kanesan, Zainal, Ahamed [21] have worked on mixed 

convection in a porous annular cylinder with isothermal 

conditions on inner and outer wall, considering thermal 

non-equilibrium modeling. Havstad and Burns [17] 

used a perturbation method and a finite difference 

technique to analyze the heat transfer characteristics in 

a vertical annulus filled with a porous medium and 

presented correlations for the heat transfer in the 

annulus. Hickox and Gartling [18] studied natural 

convection flow in a vertical annular enclosure for a 

wide range of radius and aspect ratios, and also used an 

approximate analysis to obtain a closed form solution 

for the Nusselt number when the aspect ratio of the 

annulus is high. Work carried out by authors Reddy, 

Narasimhan [13] involves a study of the interplay 

between internal heat generation and externally driven 

natural convection inside a porous medium annulus 

using numerical methods. The axisymmetric domain is 

bounded with adiabatic top and bottom walls and 

differentially heated sidewalls. The generalized 

momentum equation with Brinkman–Darcy–

Forchheimer terms and the local thermal non-

equilibrium based two-energy equation model were 

solved to determine the flow and the temperature 
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distribution using the Finite Volume Method. Irfan [11] 

has studied free convection in an annular cylinder 

saturated with porous media having combined effect of 

natural convection and thermal radiation. His 

investigation included heat and mass transfer with 

respect to a plate and an annular cylinder subjected to 

variable temperature and isothermal temperature 

conditions, effect of viscous dissipation, heat transfer 

investigation including variable wall temperature for 

both equilibrium and non-equilibrium model. Natural 

convection by internal heat generation was studied in 

[16]. This study assumes local thermal equilibrium 

(LTE) to exist between the solid and fluid phases of the 

porous medium. ‘Convection in porous media’ by Bejan 

and Nield [4] was used to understand the basic concepts 

of heat transfer in porous media. ‘Fundamentals of 

Finite Element Method for Heat and Fluid Flow’ by 

Lewis, Nithiarasu and Seetharamu [3] was used to 

understand concepts in FEM and for formulation. 

In our present study we have incorporated heat 

generation conditions for the thermal equilibrium 

model. Three cases were studied in our analysis. These 

have been depicted in fig. 2. The 3 cases that were 

examined as shown in fig. 2 are: 

-Heat Generation on the top of the porous annulus. 

-Heat Generation at the centre of the porous annulus. 

-Heat Generation at the bottom of the porous annulus. 

In each of these cases, the variation of the Nusselt 

number and the Sherwood number was studied with 

respect to Rayleigh-Darcy number, radius ratio and 

aspect ratio. 

Nomenclature: 

T; T̅ : Dimensional (°C) and non-dimensional 

temperatures respectively 

C;  C̅  : Dimensional and non-dimensional species 

concentration respectively 

u, w = Velocity in r and z directions, respectively (m/s) 

r, z= Cylindrical coordinates 

R,Z=Non-dimensional cylindrical coordinates 

H=Height of the cylinder 

L    = ro – ri =Reference/characteristic length 

AR= aspect ratio= H/L    

Radr= radius ratio= r − r /r  

Nu, Sh= average Nusselt and Sherwood numbers 

respectively 

 

2. MATHEMATICAL MODELING AND 

FORMULATION 

A two dimensional, axisymmetric model of a fluid-

saturated vertical porous annular cylinder with an 

internal heat generating porous matrix was considered 

as the computational domain. Constant temperature 

boundary conditions were imposed. The vertical walls 

were differentially heated and maintained as hot left 

wall (Th) and cold right wall (Tc). The horizontal walls 

were kept adiabatic. The analysis performed was for a 

steady, laminar, incompressible natural convection fluid 

saturating an annulus filled with a uniformly heat 

generating homogeneous isotropic porous solid matrix 

with uniform volumetric porosity. The convecting fluid 

and the heat generating solid matrix were considered to 

be in local thermal equilibrium. The Boussinesq 

approximation for linear density variation with local 

fluid temperature was assumed to be the cause of the 

buoyancy force in the convecting fluid. 

 

Fig 1. Porous Medium Embedded with Cylindrical 

Geometry. 
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VALIDATION: 

                                             Table 1 

Ra* 

 

 

 

Z-G. Du  

and 

E. Bilgen 

 [16] 

Walker 

et al. 

 

  

Beckerma 

nn et al.  

 

 

Shiralkar 

 et al. 

 

  

Present 

Study 

 

 

50 1.978 1.98 1.981 no result 1.9632 

100 3.091 3.097 3.113 3.115 3.0613 

200 4.931 4.89 5.038 4.976 5.216 

 

The results were cross-checked with previously 

published data for the case of natural convection inside 

the porous medium with heat generation. Further 

progress was made to predict the heat and fluid flow 

characteristics. The comparison of the Nusselt number 

values is shown in table 1, which establishes the 

accuracy of present method. 

 

GOVERNING EQUATIONS: 

The Continuity equation can be written as:    

     

  
+ 

     

  
 = 0                                      (1)                 

Where, u and w are the velocities in ‘r’ and ‘z’ directions 

respectively and defined as follows: 

u = −
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The Momentum equation is as shown below:  
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After substituting the non-dimensional parameters (as 

shown in table 1) in the momentum equation, we get: 

 

    ̅ 

   
 + R

 

  
(
 

 

  ̅

  
) = RRa [

  ̅

  
+ N

  ̅

  
]                                  (5) 

                                                         

The energy equation with heat generation is as shown 

below: u 
  

  
 + w 

  

  
 = α[ 
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The following non-dimensional parameters were 

defined and used: 

Non dimensional radius r̅ = 
 

    
                          

 

Non dimensional height z̅ = 
 

    
   

 

Non dimensional stream function Ψ̅ = 
 

     
  

                                         

Non dimensional temperature T̅ = 
      

       
  

 

Non dimensional concentration C̅ = 
      

       
 

                 

Rayleigh-Darcy number Ra*=RaDa=
            

  
       

Where Da=
 

    
  is the Darcy Number and K =

 
    
 

         
 is 

the permeability of the medium 

               

Thermal diffusivity for the medium can  

be defined as: α = 
 

   
      

Lewis number Le=
 

 
 where D is the diffusion coefficient 

After substituting the non-dimensional parameters (as 

shown in table 1) in the energy equation with heat 

generation, we get: 
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Where  G =
        

 

        
 is the non-dimensional heat 

generation. 

L   =ro-ri=the thickness of the porous zone. 

k =thermal conductivity of the medium. 

q′′′ Is the volumetric heat generation within the 

medium. 

The Concentration Equation can be shown as:  

u
  

  
+  w

  

  
=  D{ 

 

 
 
 

  
(r

  

  
) +  

    

   
 }          (8) 

After substituting the non-dimensional parameters (as 

shown in table 1) in the concentration equation, we get: 

 

 
  [

  ̅
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  ̅
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  ̅

  
) + 

    ̅ 

   
)                     (9) 

 

BOUNDARY CONDITIONS: 

Constant temperature and species concentration values 

were specified on the hot and cold walls. The boundary 

conditions used for this case, taking into account heat 

generation within the medium, are as shown below: 

At the inner wall of the annulus: 

At r = ri ; T = Ti ; C = Ci ; Ψ = 0                                                             

At the outer wall of the annulus: 

At r = ro ; T = T∞ ;C = Co ; Ψ = 0          

The value of non-dimensional generation was specified 

as 0.1, to minimise time for execution of our program.  

 

Applying the non-dimensional parameters (as shown in 

table 1) in the above equations results in the following 

non dimensional boundary conditions: 

a) At the inner wall of the annulus: 

At r = ri; T̅=T̅ =1; C̅=C̅ = 1; ψ̅ = 0                                                                              

 

b) At the outer wall of the annulus: 

              At r = ro; T̅=T̅ =0;C̅=C̅ = 0; ψ̅= 0                                                      

The average Nusselt number (Nu̅̅ ̅̅ ) is calculated by using 

the relation as shown. The temperature gradient (
  ̅

  ̅
) is 

evaluated using a 4-point polynomial fitting function 

along the nodes near the inner wall of the vertical 

porous annular cylinder.  

 Nu̅̅ ̅̅ = −∫
  ̅

  ̅
∂z̅̅ ̅ 

 ̅

 
                                    (10) 

 

3.  SOLUTION METHODOLOGY 

The solution of these governing equations gives the 

effect of several parameters on fluid flow and heat in 

porous media. In the present study, Finite Element 

Method (FEM) was used for all the case studies. The 

Galerkin’s method was employed to convert the partial 

differential equations into matrix form of equations for 

an element. 

Three cases were studied in our analysis. These have 

been depicted in fig. 2. The 3 cases that were examined 

as shown in fig. 2 are: 

-Heat Generation on the top of the porous annulus. 

-Heat Generation at the centre of the porous annulus. 

-Heat Generation at the bottom of the porous annulus. 

The computational domain bounded by the region of 

the porous wall was meshed as shown in each of the 

three cases shown fig. 2. The x coordinate values 0.2 to 

1.2 represent the extreme values of non-dimensional 

radius. The y coordinate values 0 to 5 represent the 

extreme values of the non-dimensional height. The 

region consists of 1800 elements and 961 nodes. 
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1. Heat generation zone defined on the top of 

                             the porous wall. 

     

2. Heat generation zone defined at the centre   

              of the porous wall. 

             

3. Heat generation zone defined at the bottom  

                  of the porous wall. 

Fig. 2 Above is a schematic representation of the section 

of the porous wall after it has been meshed in each of 

the three cases that were examined. 
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4. RESULTS AND DISCUSSIONS:

ISOTHERMAL PLOTS OBTAINED FOR GG=0.1, Radr=Asp=1 at various Rayleigh-Darcy numbers: 

TOP:              

                          For Ra*=10                    For Ra*=100                        For Ra*=1000 

CENTRE:                

  

                    For Ra*=10                               For Ra*=100       For Ra*=1000 

BOTTOM: 

 

 

 

 

 

 

 

                    For Ra*=10       For Ra*=100       For Ra*=1000 

Fig 3 Isotherms for various Rayleigh number considering generation on top, centre and bottom. 
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The variation in the isothermal lines can be seen in fig. 3 

for various Rayleigh-Darcy numbers. One can clearly 

see how the isothermal profile from Ra*=10 (pure 

conduction) to Ra*=1000(pure convection) varies (in 

each of the cases) and how the profile changes as flow 

develops-from nearly vertical lines, parallel to the walls 

to nearly horizontal lines perpendicular to the walls. At 

low values of Ra*, it can also be seen that the isotherms 

localize and confine themselves to a region near the heat 

source. A region of the isothermal plot, located near the 

heat source remains parallel with the top wall, near the 

source, indicating that the flux associated with the heat 

generating source is in a direction perpendicular to the 

top walls and parallel to the hot and cold walls. As the 

value of Ra* was increased, it was observed that the 

isotherms began to accumulate and crowd near the hot 

wall. This indicated the development of stronger and 

higher thermal gradients near the hot wall due to a 

decrease in the thickness of the thermal boundary layer.  

Fig. 4a shows the Nusselt number variation with respect 

to the Rayleigh-Darcy number for a value of Non-

dimensional heat generation =0.1(Aspect Ratio=1, 

Radius Ratio=1). In this case, the Nusselt number 

variation with respect to the Rayleigh-Darcy number 

was found to be nearly constant in the range of Ra*=1 to 

Ra*=75, indicating that the heat transfer rate wasn’t 

affected much in the pure conduction case (i.e at low 

values of Ra*). As the Rayleigh-Darcy was increased 

beyond Ra*=75, the Nusselt number started increasing 

exponentially. This indicated that better fluid 

circulation and higher buoyancy effects in the flow 

improved the rate of heat transfer drastically. Fig. 4b 

shows the effect of a positive buoyancy ratio on the plot 

obtained in 4a. The Nusselt number was found to 

increase. The thermally induced buoyancy forces were 

being assisted by the mass induced buoyancy forces for 

the case of N=1. In both 4a and 4b, the Nusselt number 

was found to be highest for the case of heat generation 

at the bottom. This is due to the fact that the fluid 

circulation is enhanced as the heat source moves down, 

allowing circulation of the entire fluid present within 

the cavity. As the heat source is shifted upwards, there 

is a tendency for the fluid to become stagnant near the 

bottom. As a result of which, convection induced fluid 

circulation is not at its full potential, and consequently, 

the heat transfer rate diminishes. 

In fig. 5, for a constant value of non-dimensional heat 

generation=0.1, a constant value of aspect ratio=5 and a 

constant Rayleigh-Darcy number of 600, the average 

Nusselt number was found to increase with an increase 

in radius ratio. This result follows from the fact that 

with increasing radius ratio, the annulus width 

increases, and the fluid volume associated with the 

strong temperature and velocity gradients near the 

inner boundary increases. Again, the Nusselt number 

was found to be at its highest when the heat generating 

zone was located at the bottom of the porous wall and 

decreased as the source shifted upwards.  

 In fig. 6, it is observed, that, for a constant value of 

radius ratio and Rayleigh-Darcy number, the average 

Nusselt number was found to decrease with an increase 

in aspect ratio. As aspect ratio increases, the thermal 

boundary layer increases in thickness due to reduced 

fluid density. Increase in the thermal boundary layer 

thickness and reduced fluid density cause a reduction in 

the heat transfer by convection, thereby, leading to a 

reduced Nusselt number. Again, the Nusselt number 

was found to be maximum for the case of heat 

generation on the bottom of the porous wall, and 

gradually decreased as the source shifted upwards.                      
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Fig 4a. Nusselt number vs Rayleigh-Darcy number for Non-dimensional heat generation of 0.1(AR=1, Radr=1) buoyancy 

ratio=0. 

 

Fig 4b. Nusselt number vs Rayleigh-Darcy number for Non-dimensional heat generation of 0.1(AR=1, Radr=1) buoyancy 

ratio=1. 
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Fig 5. Nusselt number vs Radius ratio for GG=0.1(Ra*=600, AR=5) 

 

 

Fig 6. Nusselt number vs Aspect ratio for GG=0.1(Ra*=600, Radr=5) 
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Fig. 7 shows the streamline plots for various Ra* values 

considering heat generation on the top, the centre and 

the bottom. In each of the three cases, for a low 

Rayleigh-Darcy number, the centre of fluid circulation 

was found to be close to the middle of the cavity. Fluid 

in contact with hot wall becomes less dense and moves 

up. It is replaced by cooler fluid and the cycle continues. 

As Rayleigh- Darcy number was increased, buoyancy 

induced flow became dominant and convection was 

found to increase leading to the flow penetrating deeper 

into the matrix. Higher Rayleigh-Darcy numbers imply 

a higher permeability of the solid-porous matrix, 

providing reduced resistance induced by boundary 

friction associated with the matrix, thereby allowing the 

fluid to penetrate deeper into the matrix. The position of 

the eye of the vortex and the nature of the circulation 

trend were found to be directly dependent on the 

position of the heat source, as can be seen in the figure.  

Fig. 8a shows the Sherwood number variation with 

respect to the Rayleigh-Darcy number for a value of 

Non-dimensional heat generation =0.1 in each of the 

three cases (Aspect Ratio=1, Radius Ratio=1). The 

Sherwood number variation with respect to the 

Rayleigh-Darcy number was found to remain almost 

constant up to Ra*=10 (pure diffusion case at low values 

of Ra*). As the Rayleigh-Darcy was increased beyond a 

value of 10, the Sherwood number started increasing 

exponentially. This indicated that better fluid 

circulation and higher buoyancy effects in the flow 

improved the mass transfer rate. The mass transfer rate 

magnitude and trends in each of the three cases were 

found to be similar (refer Table 4). This can be 

attributed to the fact that, even though a change in the 

position of the heat source has a direct impact on the 

heat transfer rate, it has very little effect on 

concentration induced flow, as a result of which, the 

mass transfer rate was found to be unaffected by a 

change in the position of the heat source. Fig. 8b depicts 

the Sherwood number variation with Ra*, for heat 

generation on the top of the porous wall. For a constant 

value of Ra*, the Sherwood number was found to 

increase drastically as Lewis number was increased 

from 1 to 10. Mass transfer rate due to enhanced flow 

and higher buoyancy effects improves with a decrease 

in thermal diffusion. 

In fig. 9a, for a constant value of non-dimensional heat 

generation=0.1, a constant value of aspect ratio=5 and a 

constant Rayleigh-Darcy number of 600, the average 

Sherwood number was found to increase with an 

increase in radius ratio. This result follows from the fact 

that with increasing radius ratio, the annulus width 

increases, and the fluid volume associated with the 

concentration gradients near the inner boundary 

increases. For a constant value of Radius Ratio, the 

Sherwood number was found to increase drastically as 

Lewis number was increased from 1 to 10 as shown in 

fig. 9b. In both 9a and 9b, the Sherwood number was 

found to be at its highest when the heat generation zone 

was located at the bottom of the porous wall. In fig. 9a 

the mass transfer rate for the case of heat generation at 

the centre of the porous wall was found to be slightly 

less than that for the case of heat generation at the top of 

the porous wall up to a radius ratio value of 3, beyond 

which the mass transfer rate for the case of heat 

generation at the centre was found to be higher than the 

same at the top. In fig. 9b, as the porous width was 

increased, the Sherwood number was eventually found 

to be at its maximum for the case of heat generation at 

the bottom and similar in magnitude for the cases of 

heat generation at top and the at the centre. 

In fig. 10a, it is observed, that, for a constant value of 

radius ratio and Rayleigh-Darcy number, the average 

Sherwood number was found to decrease with an 

increase in aspect ratio. As Aspect ratio increases, the 

concentration boundary layer increases in thickness due 

to reduced fluid density, thereby causing reduced mass 

transfer. In fig. 10a the mass transfer rate for the case of 

heat generation at the centre of the porous wall was 

found to be slightly less than that for the case of heat 

generation at the top of the porous wall, up to a radius 

ratio value of 3, beyond which the mass transfer rate for 

the case of heat generation at the centre was found to be 

higher than the same at the top. Mass transfer rate was 

again found to increase with an increase in Lewis 

number as can be seen in fig. 10b. This behaviour has 

been explained in the next paragraph. Like in fig. 9b, the 

Sherwood number was eventually found to be at its 

maximum for the case of heat generation at the bottom 

and similar in magnitude for the cases of heat 

generation at the top and the at the centre. 

Fig. 11a depicts the variation of the Average Sherwood 

Number with increase in Lewis number, for Non-

dimensional heat generation of 0.1; AR=5; Radr=5 and 

Ra*=500. Sherwood number was found to increase with 

an increase in Lewis number. The concentration 

boundary layer becomes thinner as Le increases, which 

in turn increases the concentration gradient and thus 

the Sherwood number. A logarithmic plot of this 
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variation is shown in Fig. 11b. A best-fit line was 

obtained, and using the power law method, one was 

able to derive a correlation between the Sherwood 

number and Lewis number. There was an excellent 

agreement between the values obtained using our 

correlation and the values from our program. This can 

be seen in Table 5. 

STREAMLINE PLOTS OBTAINED FOR GG=0.1, Radr=Asp=1 at various Rayleigh-Darcy numbers: 

TOP: 

                     

                  Ra*=1                                                          Ra*=100                                                                Ra*=1000 

CENTRE: 

                   

 Ra*=1                                                          Ra*=100                                                             Ra*=1000 
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BOTTOM: 

                      

 Ra*=1                                                            Ra*=100                                                             Ra*=1000                                  

Fig. 7 Streamline plots obtained for various Ra* values, considering heat generation on the top, the centre and the bottom. 

Fig 8a. Sherwood number vs Rayleigh-Darcy number for Non-dimensional heat generation of 0.1(AR=1, Radr=1) in each 

of the three cases. 
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                                 Table 2 

Ra* Sh  

TOP 

Sh 

CENTRE 

Sh 

BOTTOM 

1 1.4014 1.4001 1.3992 

5 1.5176 1.5352 1.5308 

10 1.7772 1.8417 1.859 

50 4.315 4.3017 4.5227 

75 5.7335 5.6199 5.8664 

100 7.0184 6.825 7.0737 

200 11.2617 10.8742 11.1092 

350 16.0905 15.552 15.8172 

500 19.932 19.2971 19.6249 

600 22.1501 21.4654 21.8421 

800 26.0268 25.2621 25.7439 
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Fig 8b. Sherwood number vs Rayleigh-Darcy number for Non-dimensional heat generation of 0.1 at the top of the porous 

wall (AR=1, Radr=1) for different values of Lewis number. 

 

 

Fig 9a. Sherwood number vs Radius Ratio for Non-dimensional heat generation of 0.1(AR=5, Ra*=600) at Lewis 

number=1. 
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Fig 9b. Sherwood number vs Radius Ratio for Non-dimensional heat generation of 0.1(AR=5, Ra*=600) at Lewis 

number=10. 
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Fig 10b. Sherwood number vs Aspect Ratio for Non-dimensional heat generation of 0.1 (Radr=5, Ra*=600) Lewis 

number=10. 

 

 

Fig 11a. Sherwood number vs Lewis number for Non-dimensional heat generation of 0.1(AR=5, Radr=5 and Ra*=500). 
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Fig 11b. Logarithmic plot of the Sherwood number vs Lewis number relationship for non-dimensional heat generation of 

0.1(AR=5, Radr=5 and Ra*=500). 

 

                                                                                  Table 3 

 

The equation of the best-fit line obtained for the plot 

shown in fig. 11b. Is:  

log(Sh) = 0.5663log(Le)+ 1.0846 

Using the Power Law method, one can arrive at a 

correlation between Sherwood number and Lewis 

number: 

Sh = 12.1507 Le .       

 

 

 

 

 

 

 

Le Sh Sh correlation 

1 11.6804 12.1507 

2 18.2988 17.9917 

3 23.2172 22.6358 

4 27.2567 26.641 

5 30.7351 30.2293 

6 33.8144 33.5172 
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10 43.6277 44.7612 
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Fig. 12 depicts the variation in the iso-concentration 

lines for various Rayleigh-Darcy numbers for each of 

the cases studied. One can clearly see how the profile 

develops from Ra*=10 (pure conduction) to Ra*=1000 

(pure convection) -from nearly vertical lines, parallel to 

the walls to nearly horizontal lines perpendicular to the 

walls of the cylindrical annulus. The lines were found to 

accumulate and crowd near the hot wall at higher 

values of Ra*, indicating the development of a thinner 

concentration boundary layer and thus, better internal 

concentration gradients, promoting the mass transfer 

rate and subsequently improving the value of 

Sherwood number.

 

ISOCONCENTRATION PLOTS OBTAINED FOR GG=0.1, Radr=Asp=1 at various Rayleigh-Darcy numbers: 

 

TOP:  

                           

  For Ra*=10                                                                        For Ra*=100                                                          For Ra*=1000 

          

CENTRE: 

                              

          For Ra*=10                                                                       For Ra*=100                                                       For Ra*=1000 
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BOTTOM: 

                            

           For Ra*=10                                                               For Ra*=100                                                                For Ra*=1000 

Fig. 12 Iso-concentration lines for various Ra* values considering heat generation on the top, the centre and the bottom. 

5. CONCLUSIONS 

Heat and mass transfer in an annular, vertical, porous 

cylinder was studied considering the thermal 

equilibrium model for natural convection. Separate heat 

generation regions were defined: 1.) On the top of the 

annulus 2.) At the centre of the annulus 3.) At the 

bottom of the annulus. The Finite Element method was 

used to obtain the solution for the governing partial 

differential equations. The following conclusions have 

been drawn 

- Nusselt number was found to increase with an 

increase in the Rayleigh-Darcy number. This can be 

attributed to the dominance of the buoyancy effects that 

arise within the fluid circulation at high Ra* values. 

Nusselt number was found to be maximum for the case 

of heat generation at the bottom of the annulus. Nusselt 

number improved for a positive value of buoyancy 

ratio. 

-Nusselt number was found to increase with an increase 

in radius ratio due to the development of strong 

thermal gradients that arise due to an increase in the 

fluid volume within the annulus. Nusselt number was 

found to be maximum for the case of heat generation at 

the bottom of the annulus. 

- Nusselt number was found to decrease with an 

increase in Aspect ratio due to decreased fluid density 

in higher regions and development of thicker thermal 

boundary layers leading to smaller thermal gradients. 

Nusselt number was found to be maximum for the case 

of heat generation at the bottom of the annulus. 

- Sherwood number was found to increase with an 

increase in the Rayleigh-Darcy number. This can be 

attributed to the dominance of the buoyancy effects that 

arise within the fluid circulation at high Ra* values, 

causing an improvement in the overall mass transfer 

rate due to better fluid flow within the annulus. The 

magnitude of the Sherwood number and the 

corresponding trends in each of the three cases were 

found to be similar. 

-Sherwood number was found to increase with an 

increase in the radius ratio due to development of 

strong concentration gradients with an increase in the 

fluid volume associated with the hot wall. Sherwood 

number was found to be maximum for the case of heat 

generation at the bottom of the annulus. 

- Sherwood number was found to decrease with an 

increase in Aspect ratio due to a decrease in the fluid 

density at the hot wall and therefore thicker 

concentration boundary layers at the wall causing a 

drop in the concentration gradients. Sherwood number 

was found to be maximum for the case of heat 

generation at the bottom of the annulus. 

-Sherwood number was found to increase with increase 

in Lewis number for a constant Ra* value. As the value 

of Le increases, thermal diffusion decreases, mass 

transfer due to enhanced fluid flow becomes dominant, 

causing a decrease in the concentration boundary layer 

thickness. 
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